Anti-ACE2 antibody

  • Description

  • Application Data

Description

Recognises ACE2 C-terminus in Western blots and immunohistochemistry with a strong signal and low background noise

See full description

Application Data

Catalogue number crb2005278
Antibody Anti-ACE2 antibody
Antigen Peptide KLH conjugated synthetic peptide crb1200512e
Aliases Angiotensin-converting enzyme 2
Host Species Rabbit
Antibody Type Polyclonal
Concentration 0.5 mg/ml TEA eluate
Target ACE2
Storage Stabilisers This material is supplied in PBS containing 0.01% sodium azide and 1% trehalose. The product should be stored at +4°C for short term storage and -20°C for long term storage. Avoid repeated freeze/ thaw cycles.
Specificity Recognises ACE2 C-terminus
Storage This material is supplied in PBS containing 0.01% sodium azide and 1% trehalose. The product should be stored at +4°C for short term storage and -20°C for long term storage. Avoid repeated freeze/ thaw cycles.
References

Gheblawi et al., (2020). Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ Res. 126(10): PMID: 32264791

 

Ziegler et al., (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 181(5): 1016. PMID: 32413319

 

Material Safety Data Sheet (MSDS)

Angiotensin-converting enzyme 2 (ACE2) is a receptor present in the human cardiovascular system as well as in the gut, kidneys, central nervous system, and adipose tissue. ACE2 is a negative regulator of the renin angiotensin system (RAS) mainly by converting Ang (angiotensin) I and Ang II into Ang 1–9 and Ang 1–7, respectively.

ACE2 has been shown to be involved in heart failure (HF), systemic and pulmonary hypertension (PH), myocardial infarction (MI), and diabetic cardiovascular complications where it may play a protective role. More recently it has been shown to be the receptor for SARS-CoV- and SARS-CoV-2 spike (S) proteins. Binding of S proteins to ACE2 initiates cellular entry via receptor-mediated internalization. SARS-CoV-2 spike (S) protein appears to bind ACE2 on host cells with significantly higher affinity than SARS-CoV-S. Following binding and internalisation ACE2 is degraded by proteolytic cleavage leading to loss of ACE2 function. This can further complicate the disease since although ACE2 facilitates viral entry to cells it also offers protection in acute lung injury. ACE2 is therefore a key target of interest in the fight against COVID-19.

Anti-ACE2 antibody