Histone H3 (1-22) ARTKQTARKSTGGKAPRKQLAT-acid
Description
Application Data
Description
-
Histone H3 (1-22) is derived from Histone 3 (H3) which is one of the four core histones fundamental for compacting eukaryotic DNA into a structure known as the nucleosome. The biotinylation of a histone 3 lysine is present.
Application Data
-
Catalogue number crb1000267 Molecular Weight 2354.4 Sequence (one letter code) ARTKQTARKSTGGKAPRKQLAT-acid Sequence (three letter code) H-Ala-Arg-Thr-Lys-Gln-Thr-Ala-Arg-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-Lys-Gln-Leu-Ala-Thr-OH
Purity >95% References Hyland et al (2005) Insights into the Role of Histone H3 and Histone H4 Core Modifiable Residues in Saccharomyces cerevisiae. Mol. Cell. Bio. (22) 10060 PMID: 16260619
Nagarama Kothapalli et al. (2006) Biological functions of biotinylated histones. J. Nutr. Biochem. (7) 446 PMID: 15992689
Henneman et al (2018) Structure and function of archaeal histones. PLOS. DOI: https://doi.org/10.1371/journal.pgen.1007582
Manufactured in: United Kingdom Histone H3 (1-22) is derived from Histone 3 (H3) which is one of the four core histones (H2A, H2B, H3 and H4) fundamental in compacting eukaryotic DNA into a structure known as the nucleosome. The nucleosome arises when 147 base pairs of DNA wrap around a H3-H4 tetramer and two H2A-H2B dimers, forming the histone octamer core. Both H4 and H3 are highly conserved and perform roles in binding to segments of DNA which enter and leave the nucleosome and in chromatin formation. Similar to the other core histone, H3 has a globular domain and a flexible N-terminal domain, “histone tail” which can undergo modifications such as acetylation, methylation, phosphorylation and ubiquitination. Due to histones containing a large number of lysine and arginine residues they have a positive net charge which interacts in an electrostatic manner with the negatively charged phosphate groups in DNA. The transcriptional activation or silencing of the chromatin is controlled by ATP-dependent chromatin remodelling factors and histone modifying enzymes which target histone proteins. Both processes function to alter the positioning of the nucleosome, allowing the DNA it to be either available or inaccessible to the transcription machinery.